Product Features

- DC 6000 MHz
- +7.5 dBm P1dB at 900 MHz
- +19.5 dBm OIP3 at 900 MHz
- 15 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 Ω

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Device Current

Product Description

The AG202-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG202-86 typically provides 15 dB gain, +19.5 dBm OIP3, and +7.5 dBm PldB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-8 (micro-X) industry-standard SMT lead-free/green/I compliant package.

The AG202-86 consists of Darlington pair amplific using the high reliability InGaP/GaAs HBT process and only requires DC-blocking capacitors, a and an inductive RF choke for operation.

The broadband MMIC amplifier can be various current and next generation wh such as GPRS, GSM, CDMA, and CDMA. the AG202-86 will work for other within the DC to 6 GHz frequency and fixed wireless.

Functi

Pin No.

Typical

1900

13.9

-20

-16

+6.5

+19.2

3.8

2140

13.5

-16

-12

+6.2

+18.9

3.8

900

14.7

-25

-16

+7.6

+19.6

3.5

2.4

Specifications (1)

>	TWO	Persormance	(1)
		<i>A</i> -	

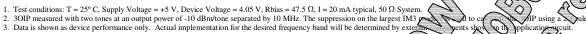
Parameter	Units	Min	Ty	(0/3)	(X)	Sme	Units	
Operational Bandwidth	MHz	DC	\geq	6000	(C)	equency	MHz	500
Test Frequency	MHz		Sod		7/3	21	dB	15.0
Gain	dB		(0)		S_{s}	100	dB	-25
Input Return Loss	dB			_(?)	b \$		dB	-16
Output Return Loss	dB		V /	(C)		ut P1dB	dBm	+7.7
Output IP3 (2)	dBm	20	√ 19.6 ¿			utput IP3	dBm	+19.9
Output IP2	dBm	$\langle C \rangle$	+27(0		<u>VN</u>	oise Figure	dB	3.5
Output P1dB	dBm 🕹		+787		2>			
Noise Figure	dB\(C		3)			
Test Frequency	M) ~ (₹¥0	(D)				
Gain	\mathcal{O}	12.9	3.9 (7 4.9				
Output IP3 (2)	(dPm	20	+19	5				
Output P1dB	\sim		1011	/	=			
Device Voltage	70) v		C. 6.5					

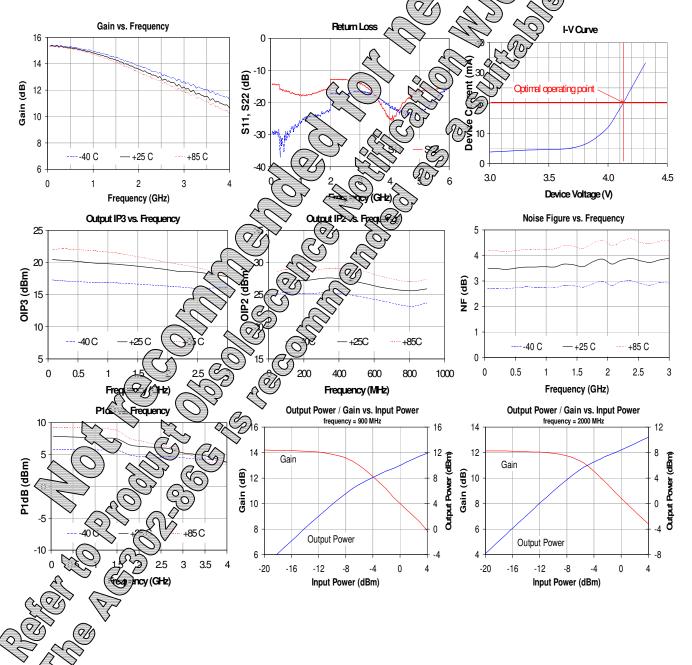
Test conditions: 25° 2. 3OIP measured with arated by 10 MHz. The

Absolu¹

Parame	Rating
Operatin Case Te (by ture	-40 to +85 °C
Storag	-55 to +125 °C
DC e	+4.5 V
R Power (continuous)	+10 dBm
on Tert lature	+250° C

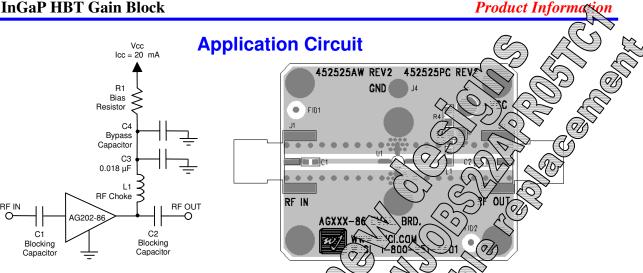
Ordering Information


Part No.	Description
AG202-86	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG202-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)


Specifications and information are subject to change without notice

Typical Device RF Performance Supply Bias = +5 V, R_{bias} = 47.5 Ω , I_{cc} = 20 mA

Frequency	MHz	100	500	900	1900	2140	2400	35
S21	dB	15.0	15.0	14.7	13.9	13.5	13.3	
S11	dB	-25	-25	-25	-20	-16	-16	7
S22	dB	-14	-16	-16	-16	-12	-12	728 J
Output P1dB	dBm	+7.8	+7.7	+7.6	+6.5	+6.2	Ǖ6/ \	(f)+4.7 V
Output IP3	dBm	+20.2	+19.9	+19.6	+19.2	+18.9	(10)	
Noise Figure	dB	3.5	3.5	3.5	3.8	3.8	2	



Typical Device RF Performance (cont'd) Supply Bias = +6 V, R_{bias} = 98 Ω , I_{cc} = 20 mA Gain vs. Frequency Output IP3 vs. Frequency 16 14 20 OIP3 (dBm) Gain (dB) 12 10 10 8 --- -40 C -+25 C +85 C +85 C -40 C +25 C 5 6 0.5 0 1.5 800 1000 3 Frequency (GHz) Frequency (GHz) P1dB vs. Frequency 10 5 P1dB (dBm) +25 C +85 C -10 0.5 1.5 2.5 3 1.5 Frequency (GHz) Gain vs. Frequency Output IP2 vs. Frequency 16 30 Gain (dB) 20 +25 C +85 C -40c +250 +85c 15 0.5 2.5 200 0 1.5 2 3 0 600 800 1000 Frequency (GHz) Frequency (MHz) vs. Frequency Noise Figure vs. Frequency 5 **(ap)** 3 2 -40 C +85 C +25 C +85 C -40 C 0.5 3 3.5 0.5 1.5 2 2.5 2 2.5 Frequency (GHz) Frequency (GHz)

Recommended Component Values

Reference			(z)	$\langle \hat{\mathcal{A}} \rangle$	\checkmark		
Designator	50	500	900	1900	2200	200	3500
L1	820 nH	220 nH	68 nH	27 nH	22 / H (C MI	18/10
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68	рF	600

The proper values for the components are dependent upon the intended frequency of open.

 The following values are contained on the evaluation board to achieve optimate addand performance.

Ref. Desig.	Value / Type	(-(26
L1	39 nH wirewound inductor	- DV
C1, C2	56 pF chip capacitor	V 5/7):
C3	0.018 μF chip capacitor	7 60.
C4	Do Not Place	7 ~
R1	47.5 Ω 1% tolerang	060.

R1 value Size 47.5 ohms 0603 6 V 98 ohms 0603 7 V 148 ohms 0805 8 V 198 ohms 0805 9 V 248 ohms 1206 10 V 298 ohms 1210 12 V 398 ohms 1210

ed Bias Resistor Values

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. W1 recommends a minimum supply bias of +5 V. A 1% tolerance resistor is recommended.

ypica Dev & Dat

Freq (MHz)	S11 (dB)	S te (anger	S2 15	SZ ng)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-29.48	Color.	(2)	85	-19.12	1.51	-14.31	-3.56
250	-30.29	~ (5)×		70.11	-19.61	0.95	-14.53	-8.85
500	-31.03	82.51	(D) .27	160.10	-19.66	-3.57	-16.48	-19.17
750	-27.59	86.84	15.16	150.47	-19.68	-6.17	-17.15	-32.28
1000	-26.46	74.45	15.00	141.16	-19.90	-10.13	-17.58	-45.39
1250	-1 (66)	661(0)	163	131.45	-19.39	-8.85	-17.61	-60.92
1500		250	(C)	122.26	-19.43	-11.48	-17.06	-74.62
1750	(\(\sigma \) \(\sigma \) \(\sigma \) \(\sigma \)	COR	3 7.36	113.06	-19.47	-12.13	-16.31	-85.09
2000	42 (1 2713	14.07	104.15	-19.35	-15.69	-15.46	-92.30
2250	17.21	1.02	13.71	96.18	-19.25	-17.05	-12.73	-90.69
2.	-17.37	-12.4	13.48	89.93	-19.39	-22.66	-12.93	-95.70
2750	-16.	A 72	13.25	81.58	-18.81	-24.09	-13.24	-99.49
(00)		(39)	13.01	73.71	-18.87	-23.14	-13.91	-103.44
	7802	77.13	12.78	66.09	-18.60	-24.00	-15.45	-107.37
2 >0	€ M6 C	38.73	12.55	58.42	-18.47	-28.95	-17.85	-114.47
3750	(S)19.36 G	O) -38.12	12.30	50.78	-18.33	-31.75	-21.54	-131.28
400	<u>2</u> /2	-32.13	12.04	42.86	-18.04	-33.50	-25.15	-166.78
4256	2231	-22.58	11.82	35.34	-17.74	-37.34	-22.92	141.70
4500	(B)	-14.16	11.49	27.87	-17.63	-40.46	-20.10	126.02
(B)	23.62	-18.03	11.21	19.99	-17.45	-42.62	-17.92	123.31
	23.18	-30.26	10.97	12.68	-17.43	-47.82	-16.53	126.61
5250	2) -21.41	-56.84	10.69	5.73	-17.35	-50.98	-16.25	134.85
550	-19.16	-76.72	10.40	-0.95	-17.11	-54.42	-15.87	146.12
5750	-16.72	-91.91	10.19	-7.71	-16.87	-57.56	-15.49	159.00
(A)	-15.23	-100.12	9.94	-14.32	-16.72	-60.23	-15.19	170.24

Device S-parameters are available for download off of the website at: http://www.wj.com

Product Information

AG202-86 (Sot-86 Package) Mechanical Informatio

This package may contain lead-bearing materials. The plating material on the leads is S

d gar follow a two for numer loss on the perface to package.

De an El Cifica for this part are recated to webs the "Application Note on.

.65±.13 [.026 ±.005] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.002] .05[.0015]

MS ESD Rating

ution! ESD sensitive device.

Executing: Class 0 Passes at 150 V

Human Body Model (HBM) andard: JEDEC Standard JESD22-A114

ESD Rating: Class II Value: Passes at 250 V

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 1

Standard: JEDEC Standard J-STD-020

Land Patte

Mounting Config. Notes 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135")

- diameter drill and have a final plated thru diameter of .25 mm (.010").

 2. Add as much copper as possible to inner and outer layers near
- the part to ensure optimal thermal performance.

 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via
- board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.

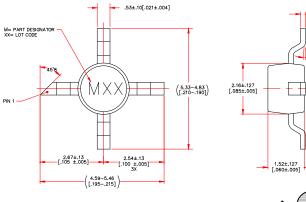
 4. Do not put solder mask on the backside of the PC board in the
- Do not put solder mask on the backside of the PC board in th region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in degrees.

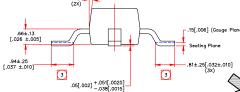
Operating Case
Thermal Resistan Rth

40 to +85 °C

440 °C/W

Junction Tem


121 °C


- 1. The thermal restands referenced from the hottest part of the jet tion to the add lead (pin 2 or 4).
- 2. This component to typical biasing condition of +4. O mA can 85 °C case temperature. A normal matter of 1 million hours is achieved for on temperature below 177 °C.

AG202-86G (Green / Lead-free Sot-86 Package) Mechanical

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflection) (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed

Outline Drawing

Land Pat

Operating Case -40 to +85 °C 440 °C/W Thermal Resi 121 °C Junction Tex

- al resistan specifical from the hottest part around lead (pin 2 or 4).
- The typical biasing condition of mA ar an 85 °C case temperature. A im M(2) of 1 million hours is achieved for ratures below 177 °C.

igit numeric he package.

s for this part are in the "Application

ESD Rating

aution! ESD sensitive device.

Class 1C

Passes at 1000 V min. Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

Value: Passes at 1000 V min. Charged Device Model (CDM) Test: Standard: JEDEC Standard JESD22-C101

MSL Rating: Level 3 at +260° C convection reflow JEDEC Standard J-STD-020 Standard:

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm
- 2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance. Mounting screws can be added near the part to fasten the
- board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and
- 6. Use 1 oz. Copper minimum.
- All dimensions are in millimeters (inches). Angles are in

Specifications and information are subject to change without notice